Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria.
نویسندگان
چکیده
Rat and pigeon heart mitochondria supplemented with antimycin produce 0.3-1.0nmol of H(2)O(2)/min per mg of protein. These rates are stimulated up to 13-fold by addition of protophores (carbonyl cyanide p-trifluoromethoxyphenylhydrazone, carbonyl cyanide m-chloromethoxyphenylhydrazone and pentachlorophenol). Ionophores, such as valinomycin and gramicidin, and Ca(2+) also markedly stimulated H(2)O(2) production by rat heart mitochondria. The enhancement of H(2)O(2) generation in antimycin-supplemented mitochondria and the increased O(2) uptake of the State 4-to-State 3 transition showed similar protophore, ionophore and Ca(2+) concentration dependencies. Thenoyltrifluoroacetone and N-bromosuccinimide, which inhibit succinate-ubiquinone reductase activity, also decreased mitochondrial H(2)O(2) production. Addition of cyanide to antimycin-supplemented beef heart submitochondrial particles inhibited the generation of O(2) (-), the precursor of mitochondrial H(2)O(2). This effect was parallel to the increase in cytochrome c reduction and it is interpreted as indicating the necessity of cytochrome c(1) (3+) to oxidize ubiquinol to ubisemiquinone, whose autoxidation yields O(2) (-). The effect of protophores, ionophores and Ca(2+) is analysed in relation to the propositions of a cyclic mechanism for the interaction of ubiquinone with succinate dehydrogenase and cytochromes b and c(1) [Wikstrom & Berden (1972) Biochim. Biophys. Acta283, 403-420; Mitchell (1976) J. Theor. Biol.62, 337-367]. A collapse in membrane potential, increasing the rate of ubisemiquinone formation and O(2) (-) production, is proposed as the molecular mechanism for the enhancement of H(2)O(2) formation rates observed on addition of protophores, ionophores and Ca(2+).
منابع مشابه
The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen.
1. Pigeon heart mitochondria produce H(2)O(2) at a maximal rate of about 20nmol/min per mg of protein. 2. Succinate-glutamate and malate-glutamate are substrates which are able to support maximal H(2)O(2) production rates. With malate-glutamate, H(2)O(2) formation is sensitive to rotenone. Endogenous substrate, octanoate, stearoyl-CoA and palmitoyl-carnitine are by far less efficient substrates...
متن کاملMitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space.
It has been generally accepted that superoxide anion generated by the mitochondrial respiratory transport chain are vectorially released into the mitochondrial matrix, where they are converted to hydrogen peroxide through the catalytic action of Mn-superoxide dismutase. Release of superoxide anion into the intermembrane space is a controversial topic, partly unresolved by the reaction of supero...
متن کاملMechanism of the antimycin A-mediated enhancement of t-butylhydroperoxide-induced single-strand breakage in DNA.
Inhibitors of complex III increased the DNA strand scission induced by t-butylhydroperoxide (tB-OOH) and cumene hydroperoxide but did not affect DNA damage induced by H2O2. The hypothesis that these effects are selectively linked to inhibition of the electron transport from cytochrome b to cytochrome c1 is validated by the following observations: (1) two complex III inhibitors, antimycin A and ...
متن کاملLow-level chemiluminescence of bovine heart submitochondrial particles.
Submitochondrial particles from bovine heart mitochondria showed low-level chemiluminescence when supplemented with organic hydroperoxides. Chemiluminescence seems to measure integratively radical reactions involved in lipid peroxidation and related processes. Maximal light-emission was about 1500 counts/s and was reached 2-10min after addition of hydroperoxides. Ethyl hydroperoxide, cumene hyd...
متن کاملInhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility
Mitochondria have been proposed as the major source of reactive oxygen species in somatic cells and human spermatozoa. However, no data regarding the role of mitochondrial ROS production in stallion spermatozoa are available. To shed light on the role of the mitochondrial electron transport chain in the origin of oxidative stress in stallion spermatozoa, specific inhibitors of complex I (roteno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 188 1 شماره
صفحات -
تاریخ انتشار 1980